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The coexistence between different informational molecules has been the preferred mode to circumvent the
limitation posed by imperfect replication on the amount of information stored by each of these molecules. Here
we reexamine a classic package model in which distinct information carriers or templates are forced to coexist
within vesicles, which in turn can proliferate freely through binary division. The combined dynamics of
vesicles and templates is described by a multitype branching process which allows us to write equations for the
average number of the different types of vesicles as well as for their extinction probabilities. The threshold
phenomenon associated with the extinction of the vesicle population is studied quantitatively using finite-size
scaling techniques. We conclude that the resultant coexistence is too frail in the presence of parasites and so
confinement of templates in vesicles without an explicit mechanism of cooperation does not resolve the
information crisis of prebiotic evolution.
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I. INTRODUCTION

The information crisis in prebiotic or chemical evolution
stems essentially from two observations: �i� the length of a
replicating polymer �i.e., RNA-like template� is limited by
the replication accuracy per nucleotide �1�, and �ii� templates
that differ significantly from each other cannot coexist in a
purely competitive setup �2�. Realistic estimates of the error
rate of primitive replication mechanisms predict a too scanty
information content per template—less than 100
nucleotides—to permit the complete codification of the
mechanism in just one template. Currently an operative rep-
lication mechanism requires at least three basic sets of dif-
ferent reactions �initiation, elongation, and termination� �3�,
thus the primitive information integrator systems must have
shared the necessary information in a number of distinct tem-
plates. Yet, attainment of template coexistence in a plausible
prebiotic scenario is still a highly controversial issue.

An attractive solution to this crisis is the hypercycle, a
cyclic reaction scheme in which each replicating polymer
aids in the replication of the next one, in a regulatory cycle
closing on itself �4�. This scheme requires that the primordial
replicators functioned both as templates and replicases �i.e.,
catalysts for replication�, a prospect confirmed by the discov-
ery of the catalytic activity of RNA in the early 1980s �5,6�.
However, the key assumption that each replicator has two
separate functions, namely a replicase for the next member
of the hypercycle and a target for the previous member, en-
countered strong criticism �7,8�. In fact, natural selection can
make each element of the hypercycle a better target for rep-
lication, but it cannot favor the cooperative part of the
scheme, i.e., to make the replicator a better replicase for
other replicators. Hence this function is bound to degenerate
rapidly as natural selection does not protect it against dele-
tions and mutations that create the so-called parasites—
molecules that do not reciprocate the catalytic support they
receive.

Another proposal to resolve the problem of the coexist-
ence between templates, which is in line with the classical
works on the origin of life �9,10�, is to enwrap the replicators

in isolated compartments or vesicles. It is presumed that the
information to code for a common replicase is shared among
d distinct template types so that template replication is fea-
sible only if all template types coexist within a vesicle �11�.
In this scheme the replicators play the template role only
whereas the replicase role is taken on by a protein—the rep-
licase. In addition, it is assumed that a vesicle splits into two
daughters after a certain number of template copies are pro-
duced. Alternatively, we may suppose that an effective cou-
pling among different template types comes about through a
common metabolism which is ultimately responsible for the
survival and reproduction of the vesicle, and that the func-
tioning of this metabolism requires the contribution of all
template types �12�.

It should be noted, however, that the proponents of the
hypercycle have always acknowledged the essential function
of compartments, particularly in the evaluation of the trans-
lation products of the information coded in the templates
�13� �see �14� for the in vitro realization of this idea�. In
reply, the advocates of the so-called package models observe
that once the replicators are put into compartments, the hy-
percyclic organization is dispensable �7�.

So far practically all package models proposed to investi-
gate template coexistence �see, e.g., �12,15–18�� assume that
the vesicles proliferate or divide with a rate that depends on
their template compositions. This assumption can be inter-
preted as a group selection pressure acting at the vesicle level
to favor vesicles of a particular makeup. Despite years of
intensive research on vesicle dynamics, however, there is no
experimental evidence that the vesicle fission rate could de-
pend on the nature of the chemicals confined inside it
�19,20�. Hence a more conservative stand is to admit that
vesicle fission is triggered by the total concentration of the
confined templates rather than by their individual propor-
tions. �Of course, the total template concentration does de-
pend on the existence of the replicase and hence on the pres-
ence of all d template types.� Interestingly, in their seminal
work Niesert et al. take this cautious position, but to avoid
the unbounded growth of the vesicle population, they discard
supernumerary vesicles according to an arbitrary prospective
value which essentially gauges the odds of a vesicle to leave
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viable descendents �11�. Then the resulting model becomes
very similar to the group selection models mentioned above.

In this paper we propose and study analytically a variant
of the original package model of Niesert et al. where the
number of vesicles is unbounded and no fitness or prospec-
tive values are assigned to the vesicles. In particular, we
derive a recursion equation for the average number of
vesicles with a given template composition, and a set of
equations for the extinction probability of the distinct vesicle
types. Our results indicate that an important conclusion of
the original work—high values of the replicase processivity
compromises the viability of the population in the presence
of parasites—is probably an artifact of sampling the vesicles
according to a prospective value. In this line, we use finite
size scaling to show how a strategy of discarding supernu-
merary vesicles at random can efficiently recover the analyti-
cal results.

II. MODEL

We follow the original package model proposed by
Niesert et al. �11� and consider a metapopulation composed
of a variable number of vesicles, each of which encloses a
certain number of templates. There are d distinct functional
types of templates l=1, . . . ,d and a nonfunctional type l=0,
termed parasite, which has an impaired function but an un-
changed replication rate. Due to imperfect replication, func-
tional templates mutate to parasites with probability u. Back
mutations as well as mutations between functional templates
are neglected. To be consistent with the conjecture that all
templates display identical targets to the replicase since they
derive from a common ancestor �most likely were members
of the same quasispecies �1��, the replication rate is assumed
to be the same for all templates �including the parasite�. Here
we do not contemplate two additional processes allowed for
in the original model, namely, the possibility of mutation to
lethal genes or the possibility of accidents. Both actions
prompt the immediate demise of the vesicle.

The life cycle �i.e., one generation� of the metapopulation
comprises three events—template replication, vesicle fission,
and vesicle extinction—that take place in this order. In this
contribution we modify the first two events in order to pro-
duce an analytical formulation of the metapopulation dynam-
ics. In particular, we assume that the quantity of templates
confined in each vesicle before replication is fixed to a cer-
tain value �. Template replication doubles this number but
then fission of the mother vesicle into two daughters of iden-
tical size restores it to the original value. Hence � can be
interpreted as the number of replicated molecules between
two vesicle fissions, which is essentially the processivity of
the replicase, i.e., the number of template copies the repli-
case can produce in a unit of time, taken here as the time
between two consecutive fissions.

In contrast, in the formulation of Niesert et al. �11� the
two daughter vesicles can have different sizes s=0, . . . ,S and
S−s, with s distributed by the binomial distribution � S

s
�2−S

where S is the size of the mother vesicle after template rep-
lication, so that the number of templates can vary among the
vesicles. The processivity � of the replicase, however, is the

same for all vesicles and so, in the average, the number of
templates within each vesicle equals �. Thus, essentially, our
formulation neglects fluctuations in the number of templates
inside the vesicles. As we will show in Sec. V, these varia-
tions in the modeling of the vesicle dynamics do not change
qualitatively the main results of the model.

In our model, the composition of each vesicle is fully
characterized by the vector k� = �k0 , . . . ,kd�, where the entries
kl yield the number of templates of type l=0, . . . ,d in the
vesicle and satisfy the constraint �l=0

d kl=�. So there are ex-
actly NT= � �+d

�
� distinct types of vesicles—the number of

compositions of � into d+1 parts. To keep track of all
vesicle types we use a combinatorial algorithm to generate
and label those compositions �21�.

The more restrictive assumption of the model is probably
the choice of equal replication rates for the distinct types of
functional templates as well as for the parasites. The suppo-
sition that the parasite and the functional classes have equal
replication rates is plausible since a parasite is essentially a
functional template whose activity was impaired by a muta-
tion in the region coding for a piece of the replicase. In any
event, allowing the parasites to replicate faster or slower than
the functional templates has an effect similar to that of in-
creasing or decreasing the mutation probability u. The choice
of different replication rates for the functional templates,
however, has drastic consequences in the limit of large �,
where the intravesicle dynamics becomes deterministic: the
more efficient template type drives the other functional tem-
plates to extinction, thus preventing coexistence even in the
absence of parasites. In fact, in a class of models where the
number of vesicles is fixed and very large, there is a limiting
value of � above which template coexistence is impossible
�17,18�. We note, however, that a more realistic scenario
would allow the replication rates of the functional templates
to vary under the pressure of natural selection. Since only the
exact balancing of those rates guarantees coexistence �and so
survival� for large �, one expects the selection of this ideal
symmetric setting. This reasoning supports the assumption of
equal replication rates for the functional templates.

A. Template replication

We assume that the replication of the � templates en-
caged in a vesicle follows a Wright-Fisher process in which
the � offspring are chosen in parallel �22�. Admitting equal
replication rates and unidirectional mutation to the parasite
class, the probability that a set of templates k0 , . . . ,kd pro-
duces the set of offspring i0 , . . . , id is given by the multinomi-
nal distribution

R�i��k�� =
�!

i0! ¯ id!
�w0 + u�1 − w0��i0�

l=1

d

�wl�1 − u��il. �1�

where wl=kl /� for l=0, . . . ,d so that �l=0
d wl=1. The inter-

pretation of Eq. �1� is straightforward. On the one hand, the
probability of producing a functional offspring of type l is
given by the probability of choosing a template of the same
type, wl, times the probability that the copy produced is
faithful, 1−u. Parasites, on the other hand, are produced by
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unfaithful copies of functional templates with probability
u�w1+ ¯ +wd� or by copies of parasites themselves, with
probability w0. Once the template replication process is com-
pleted, we are left with a vesicle of size 2� and composition
k0+ i0 , . . . ,kd+ id. This procedure is repeated for all vesicles
in the metapopulation.

In the original model �11� the replication procedure is
sequential rather than parallel. For a given vesicle we choose
a template at random �from those inside the vesicle� and
make a copy of it. If the template is of a functional type then
the copy will become a parasite with probability u. If the
chosen template is a parasite then the copy will also be a
parasite. Both template and copy �corrupted or not� are re-
turned to the vesicle and the process is repeated � times, so
exactly � new templates are added to the vesicle. This dif-
ference in the modeling of the template replication process
does not affect the results in any significant way.

B. Vesicle fission

The doubling of the size of the vesicles caused by the
template replication process leads to the splitting of the
vesicle in two daughters. Our simplifying assumption here is
that the vesicle of size 2� splits into two vesicles of size �.
The assignment of the � templates to one of the daughter
vesicles is modeled by a process of sampling without re-
placement which is described by a multivariate hypergeo-
metric distribution. Explicitly, given the composition of the

mother vesicle after template replication k� + i�, the probability
that one of the daughter vesicles has composition m0 , . . . ,md
is simply

F�m� �k� + i�� =

�
l=0

d �kl + il

ml
	

�2�

�
	 �2�

with ml�kl+ il and �l=0
d ml=�. Of course, if one of the

daughter vesicles is described by m� , then the other will be

described by k� + i�−m� . The random assortment of templates to
the daughter vesicles is the only mechanism responsible for
the loss of the essential genes for survivorship, a phenom-
enon termed assortment load. The loss of a functional tem-
plate occurs when it is assigned to an inviable vesicle, i.e., a
vesicle that does not contain the complete set of functional
templates.

As mentioned before, in the original model �11� the sizes
of the daughter vesicles are binomially distributed random
variables and so some vesicles can become very large since
what prompts vesicle fission is not its absolute size, but the
production of � template offspring. This asymmetry in the
fission process renders the population more susceptible to the
presence of parasites �see Sec. V�, but as already mentioned,
does not change qualitatively the results of the model.

C. Vesicle extinction

The viability of a daughter vesicle is guaranteed provided
it has at least one copy of each functional template. Any

vesicle lacking one of those templates is dismissed. Strictly,
we do not need to assume that the inviable vesicles disappear
from the metapopulation, but since the templates caged in
those vesicles are unable to replicate—their replicase is not
codified for—there is no point to follow their evolution any
further. We note that the total number of viable vesicles
NV=�k0�0,kl�1���l

dkl ,��, where ��m ,n� is the Kronecker
delta, is simply � �

d
�. To the leading order in � both quantities

NV and NT increase as �d and for large � we find NV /NT
=1−d2 /�+O��−2�.

D. Metapopulation dynamics

From the processes described above, it is clear that the
size of the metapopulation �i.e., the number of viable
vesicles� can, in some cases, increase without bounds. Such
unbounded growth renders a direct simulation approach of
the vesicle population dynamics unfeasible, except for the
few initial generations. To circumvent this difficulty, here we
derive a set of recursion equations for the average number of
vesicles of type m� at generation t, denoted by �t�m� �.

The basic idea is to derive a transition matrix that con-
nects the mother vesicle k� with the two daughter vesicles m� a
and m� b. From Eq. �2� we can immediately write down the
transition probability from the mother vesicle to the first
daughter,

Ga�m� a�k�� = �
i�

F�m� a�k� + i��R�i��k�� . �3�

The derivation of the transition probability from k� to the

second daughter m� b=k� + i�−m� a is more involved because of

the dependence on the intermediate states i� which we ulti-
mately want to sum over, as done in Eq. �3�. Given that the
first daughter has composition m� a, the probability that the
second daughter has composition m� b is

H�m� b�m� a� =
F�m� a�m� b + m� a�

Ga�m� a�k��
R�m� b + m� a − k��k�� �4�

which is obtained by considering only the term i�=m� b+m� a

−k� in Eq. �3� and properly normalizing. Clearly, the joint
probability that the daughter vesicles are of types m� a and m� b

given that the mother vesicle is of type k� is simply

Pab�m� a,m� b�k�� = H�m� b�m� a�Ga�m� a�k�� , �5�

and so the desired transition probability is

Gb�m� b�k�� = �
m� a

Pab�m� a,m� b�k�� = �
i�

F�i��m� b + i��R�m� b + i� − k��k�� ,

�6�

where we have replaced the dummy index m� a by i� to facili-
tate the comparison with Eq. �3�. The transition matrices
given by Eqs. �3� and �6� allow us to write a recursion equa-
tion for the average number of the different types of vesicles
in the metapopulation,
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�t+1�m� � = �
k�

��t�k���Ga�m� �k�� + Gb�m� �k��� , �7�

where the primed sum is over viable vesicles, i.e., vesicles
that contain at least one copy of each functional gene, kl
�0 for l�0. This restriction is the expression of the vesicle
extinction process.

In principle, the solution of the recursion equations �7�
yields detailed information on the time evolution of the
metapopulation. But the computational resources needed to
generate the entries of the matrices Ga and Gb seriously con-
strain the range of � and d that can be studied in practice. In
this contribution we show how this difficulty can be circum-
vented by considering a finite population of vesicles with the
same growth rate per generation as the ideal, unrestricted
metapopulation described above. Nevertheless, some inter-
esting information can be obtained from the analytical ap-
proach as described in Sec. III.

E. Extinction probability

To point out the stochastic nature of the underlying
vesicle dynamics—the approach based on the recursion
equations �7� is deterministic as the focus is on the average
number of a given vesicle type—here we describe a general
formulation to calculate the extinction probability Pe�k�� of
the lineage sprouted by a vesicle of type k�. Generalizing the
classic approach to evaluate the extinction probability in the
Galton-Watson process �23,24� we can write the following
set of equations:

Pe�k�� = �
m� a,m� b

Pab�m� a,m� b�k��Pe�m� a�Pe�m� b� , �8�

with the convention that Pe�m� �=1 if the vesicle of type m� is
inviable. Note that Pe�k��=1, ∀k� is always a solution. Sur-
prisingly, this system of NV nonlinear coupled equations eas-
ily yields to the simple iterative solution method that begins
with the guess Pe�k��=0 for all viable vesicles.

III. UNRESTRICTED GROWTH

It is clear from Eq. �7� that the asymptotic regime of the
dynamics is characterized either by the simultaneous diver-
gence or by the simultaneous vanishing of ���m� � for all
viable vesicles. The main goal here is to find the values of
the control parameters �, d, and u that separates these two
regimes. In general, this critical parameter setting can be
found by direct numerical iteration of the recursion equa-
tions.

Let us discuss first the simpler, extreme case �=d for
which there is only one type of viable vesicle, namely, m� *
= �0,1 ,1 , . . . ,1�. In this case, Eq. �2� simplifies considerably
and allows us to carry out analytically the summations in
Eqs. �3� and �6�. We find Ga�m� * �m� *�=Gb�m� * �m� *�=	d�u�,
where

	d�u� = �
i=0

d �d

i
	2 i!

di �1 − u�i
�2d

d
	 , �9�

and so �t+1�m� *�=2	d�u��t�m� *�. A straightforward numeri-
cal evaluation of Eq. �9� for u=0 yields 	2�0�=7/12 and
	d�2�0�
1/2. Since 	d is a monotonically decreasing func-
tion of u, the latter inequality implies that 	d�2�u�
1/2 for
nonzero u as well. This indicates that template coexistence is
unattainable for �=d�2. For �=d=2, however, the picture
is different: the average size of the vesicle population will
increase exponentially with increasing t provided u
uc
where uc=3−2�2 is the solution of 	2�u�=1/2. We find this
simple analytical result reassuring because it proves that,
even for finite vesicle capacities, functional templates can
persist in the presence of a steady drain towards the parasite
class.

The evaluation of the extinction probability is also
straightforward in the case �=d. Using Eq. �5� we write the
probability that a viable vesicle produces two viable daugh-
ters �i.e., vesicles of type m� *� as

p2 = d!�1

d
�1 − u�	d

2d
�2d

d
	 . �10�

Now, Eq. �9� yields the probability that the first daughter of a
viable vesicle is also viable, regardless of the condition of
the second daughter, so the probability that a viable vesicle
produces a single viable offspring, no matter whether it is the
first or the second daughter, is p1=2�	d− p2�. Hence the
probability of producing two inviable daughters is p0=1
− p1− p2. In this case Eq. �8� reduces to the simple quadratic
equation Pe= p0+ p1Pe+ p2Pe

2 with Pe= Pe�m� *�. The two so-
lutions are Pe=1 and Pe= �2	d−1� / p2. The latter is physical
provided 	d�1/2 which, as pointed out before, holds only
for d=2 and u
3−2�2.

For ��d, we must resort to the numerical iteration of Eq.
�7� or to the numerical solution of Eq. �8� to obtain the criti-
cal parameter setting that determines the regime of viability
of the metapopulation. In the former method, we begin the
iteration �t=0� with a single parasite-free vesicle, whose
composition of functional templates is as balanced as pos-
sible, e.g., �0,� /d , . . . ,� /d� in the case of integer � /d.

The results for the case of perfect replication accuracy u
=0 are summarized in Fig. 1. The critical processivity value
�c above which the size of the metapopulation diverges is
very well described by the fitting �c=d2 /2 as shown in the
figure. This indicates that the assortment load can be com-
pensated for if the redundancy � /d is larger than half the
diversity value, i.e., provided that each vesicle contains at
least d /2 copies of each functional template. This simple
result shows that there is no fundamental impediment to the
coexistence of an arbitrary number of template types in the
case of error-free replication if the cost of redundancy is
neglected. To understand the scaling �c�d2 at the critical
boundary in the error-free replication limit we must look at
the ratio r between the number of viable vesicles � �−1

d−1
� and

the total number of vesicles � �+d−1
�

�, given by
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r = �
i=1

d−1
1 − i/�

1 + i/�
. �11�

We note that since the parasite class is not taken into account
in this error-free replication analysis, the number of viable
vesicles as well as the total number of vesicles differ from
the quantities NV and NT introduced before. The only way to
obtain nontrivial values of this ratio �i.e., r�0,1� for large �
and d is to suppose that d2 /� remains of order of 1. In this
case we find r�exp�−d2 /�� and so rc=e−20.135 at the
critical boundary.

We turn now to the analysis of the case where parasites
are allowed, i.e., u�0. Figure 2 summarizes the main re-
sults, namely, the dependence on � and d of the critical
mutation probability uc above which the lineage is inviable.

The curves intersect the axis uc=0 at the values of � exhib-
ited in Fig. 1. The remarkable result revealed in Fig. 2 is that,
for fixed d, there exists a value of the mutation probability
above which coexistence between the d functional templates
is impossible regardless of the replicase processivity value
or, equivalently, the redundancy value. This result follows
from the fact that uc tends to a well-defined value less than 1
in the limit �→�. This is reminiscent of the error threshold
transition of the quasispecies model for which the replication
fidelity limits the length of the templates and hence the
amount of information that can be stored in the molecular
population �1�. Here the limitation is on the number of dif-
ferent types of functional templates that can coexist within a
vesicle and so on the total amount of information that can be
stored in the vesicle. Another result shown in Fig. 2 is the
impracticability of the analytical approach for large NT: the
time required to evaluate the matrix entries defined in Eqs.
�3� and �6� is simply prohibitive so the curves are truncated
at the values of � that surpass our computational resources.
Fortunately, the analysis of a finite population can greatly
extend these limits, as we will show in Sec. IV.

In addition to the threshold values exhibited in the pre-
ceding figures, the analytical approach allows us to obtain
some detailed information about the composition of the
metapopulation and the nature of the stochastic process. In
particular, in Fig. 3 we show the survival probability Ps=1
− Pe of the lineage sprouted by a balanced, parasite-free
vesicle obtained by solving numerically Eq. �8� for d=2. For
�=3 and 5 the ancestor vesicle is �0, �+1

d , �−1
d

�. Since the
template dynamics becomes deterministic in the limit �
→�, the survival probability must tend to a step function as
indicated in the figure.

Interestingly, we find that regardless of whether the pro-
cess is subcritical �u�uc� or supercritical �u
uc� the frac-
tion f of functional templates per viable vesicle, and conse-
quently the fraction of parasites, rapidly tends to a steady-
state value. This fraction, defined by
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FIG. 1. Logarithmic plot of the value of the processivity �c

above which the population size diverges against the number of
functional templates d in the case of error-free replication u=0.
Below �c the extinction of the lineage is certain. The solid line is
the fitting �c=d2 /2.
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FIG. 2. Mutation probability uc above which the metapopulation
is inviable as a function of the replicase processivity � for template
diversity d as indicated in the figure. The lines are the analytical
results for unrestrained growth and the symbols are the results of
the finite-size scaling analysis.
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FIG. 3. Survival probability of the lineage produced by a single
balanced, parasite-free vesicle as a function of the mutation prob-
ability u for d=2 and �left to right� �=2, 3, 4, 5, 6, 8, 10, and 20.
The lines are the analytical results for unrestrained growth and the
symbols are the results of the finite-population simulations with N
=103 and 105 independent samples.
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f = lim
t→�

�
k�

�k1 + ¯ + kd��t�k��

��
k�

�t�k��
, �12�

is shown in Fig. 4 as a function of the mutation probability.
For large � we find that f vanishes as �−1 provided u is
nonzero and, in particular, �f =d=2 for u=1. So in this limit
there is only a finite number of functional templates in each
vesicle, whereas the number of parasites grows linearly with
�. The reason the population is viable �see Fig. 3� even in
these circumstances is that the chances for choosing func-
tional templates for replication in some vesicle is not negli-
gible when the number of vesicles is greater than �, which is
always the case in the supercritical regime after a few gen-
erations.

IV. FINITE POPULATION

As pointed out before, the impracticability of generating
the entries of the matrices that govern the transitions between
viable vesicles for large values of � and d limits the appli-
cability of the analytical solution summed up in Eqs. �7� and
�8�. To get around this obstacle we consider here an alterna-
tive approach based on the Monte Carlo simulation of a finite
population. In contrast to classical models of populations ge-
netics �e.g., the Wright-Fisher and Moran models �22�� in
which the population size is kept fixed, here we allow the
number of vesicles to vary from 0 to a fixed maximum value
N. The idea is to implement the dynamics exactly as done in
the case of unrestrained growth, except that whenever the
number of vesicles becomes greater than N, the surplus
vesicles are discarded randomly. The discard takes place be-
fore the check of the viability of the vesicles �extinction pro-
cess�. This scheme is reminiscent of the so-called Russian
Roulette used in the Monte Carlo simulation of neutron pro-
duction in nuclear reactors �25�.

In the subcritical regime, the introduction of the upper
bound N is innocuous since the population size is likely to
remain small before the extinction outcome anyway. In the
supercritical regime, however, a too small bound may pre-
vent the lineage to produce and retain a minimum number of
viable vesicles that would avoid extinction and so one ex-
pects uc�N�
uc. �An operational definition of uc�N� will be
given later.� The finite population scheme is effective in the
practical situation N�NV provided that only a small fraction
of the NV viable vesicles would actually be present in the
metapopulation if it were allowed to grow unrestrained.

The previous setup for the initial structure of the
population—a single balanced, parasite-free vesicle—is not
suited to study finite size effects on the estimate of the criti-
cal mutation probability, because there is no operational way
to define uc�N�. For that end an effective strategy is to begin
with a population of m identical such vesicles. Since the
vesicles evolve independently there is a simple relationship
between the probability that a population with initial size m
thrives, denoted by Ps

m, and the survival probability of a
single vesicle Ps exhibited in Fig. 3, namely,

Ps
m = 1 − �1 − Ps�m. �13�

For m→� this quantity tends to a step function that takes on
the values 1 if u
uc and 0 otherwise. In the finite population
simulations we set m=N, since our focus in on the behavior
of Ps

m when both quantities—the initial size m and the size
upper limit N—become arbitrarily large. The results for Ps

N

are shown in Fig. 5 for different population sizes N. As N
increases, the finite-population results approximate those for
the unrestrained growth represented by the step function. To
quantify this approach, we arbitrarily define uc�N� as the
value of the mutation probability at which Ps

N=1/2 so that
the critical value uc for N→� can be inferred as illustrated
in Fig. 6.

Use of Ps
N instead of Ps is crucial for this analysis, since

regardless of the definition of uc�N� �e.g., we could define it
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FIG. 4. Fraction of functional templates per viable vesicle in the
steady-state regime for d=2 and �top to bottom� �=3, 4, 5, 6, 8, 10,
20, and 40. The symbol � indicates the value of u beyond which
the population is inviable.
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FIG. 5. The survival probability of a population composed ini-
tially by m=N balanced, parasite-free vesicles for �=d=2 and �left
to right� N=40, 80, 100, 200, and 1000. The solid line is the ana-
lytical result for unrestrained growth. Each symbol represents an
average over 105 samples.
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as the mutation probability at which Ps
N=x for any 0
x


1� this quantity tends to uc in the limit of N large. The
extrapolated values to 1/N→0 are presented in Fig. 2 and
agree perfectly with the available analytical predictions. This
gives us confidence to use the finite population estimates in
the cases where the analytical approach is not practical.

Figure 7 summarizes the results of the data collapsing
method �see, e.g., �26,27�� applied to the data of Fig. 5. The
survival probabilities Ps

N collapse into a single universal
form �scaling function� if plotted against the scaled mutation
probability �u−uc�N where uc is the critical mutation prob-
ability of the infinite population. This scaling function shows
that, for u−uc fixed, limN→� Ps

N tends to 1 if u
uc and to 0
otherwise, and that the characteristics of the threshold tran-
sition persist across a range of u of order 1 /N about uc. A
similar finite-size scaling analysis was employed to fully
characterize the error threshold transition of the quasispecies
model in the cases where the population size as well as the
molecules lengths are fixed and finite �28�.

Of course, the finite population scheme can be used to
study the original setup in which the initial population com-
prises a single vesicle, m=1, as well. In this case the size
limit N=1000 suffices to obtain perfect agreement with the
analytical results, as shown in Fig. 3.

V. DISCUSSION

In Sec. II we have outlined the differences between the
original package model proposed by Niesert et al. and our
more tractable variant. Here we present a brief comparison
between the main predictions of these models. The first im-
portant observation is that in the absence of parasites �u
=0� both models yield identical results for the viability
boundary in the plane �d ,�� �see Fig. 1�. When parasites are
present, however, there is a substantial quantitative differ-
ence between the critical mutation probability of the two
models, as shown in Fig. 8. The scheme based on synchro-
nous template replication and symmetric fission seems to be
considerably more robust to the action of parasites than the
less structured procedures of the original proposal. This re-
sult supports the view that the mechanisms of segregation of
modern cells originated in response to mutation pressure
�29�.

It is hard to see why parasites are more harmful in the
asynchronous replication and asymmetric fission setting.
Considering that parasites are rare at the beginning, their
spread should be hampered by the asynchronous replication
scheme in the initial generations and then speeded up when
the parasites become numerous. By simulating the two tem-
plate replication schemes with the same fission mechanism,
we have verified that the choice of the form of update—
parallel or sequential—practically does not affect the critical
mutation probability uc. Thus the key element to explain the
quantitative differences between the models illustrated in
Fig. 8 must be the fission mechanism. To get some insight on
that, let us consider the situation where a mother vesicle of
size 2� contains two functional templates of a certain type.
Clearly, from the mother vesicle’s perspective the optimal
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FIG. 6. Mutation probability uc�N� at which 50% of the samples
of a population of N balanced, parasite-free vesicles survive for d
=2 and �=2, 3, and 4. The linear fittings �dashed lines� uc�N�
=uc−a� /N allow us to estimate uc.
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data into a single N-independent function signals the occurrence of
a threshold phenomenon at uc.
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strategy is to send one template to each of her daughters. The
probability of this happening for the asymmetric fission strat-
egy is 1 /2 independently of the vesicle size. The symmetric
fission scheme in turn yields a slightly larger probability for
this event, namely, 1 /2� �1−1/2��−1. This tendency of the
symmetric fission strategy to a more balanced distribution of
templates of the same type to the daughters is probably the
reason for its enhanced robustness against parasites.

Our finding that uc is a nondecreasing function of � �see
Fig. 8� is at variance with the results of Niesert et al. which
predict that uc would reach a maximum and then decrease
towards zero as � increases further �11�. The reason may be
the criterion for discard of supernumerary vesicles used in
that work, which was based on three properties: the degree of
equipartition of the copies among the different functional
templates, the number of parasites and the overall redun-
dancy of the functional templates. In fact, we have verified
�see Fig. 4� that for large � and not too low u, the surviving
vesicles in the supercritical regime are heavily loaded with
parasites and so use of such selection criterion would purge
them from the population resulting in a premature extinction.

Although the finite population simulations were used here
as a tool to validate and complement the analytical results,
they are of interest on their own. In particular, the Muller
ratchet �30,31� and the mutational meltdown �32� are impor-
tant stochastic phenomena that result in the accumulation of
mutations in finite populations �see �33� for the study of both
phenomena in growing lineages�. In our framework, the
counterpart of accumulation of mutations is the accumulation
of inviable vesicles, which is explicitly ruled out by the as-
sumption that those vesicles are unable to divide into daugh-
ter vesicles. This peculiar aspect of the model was severely
criticized by Eigen et al. �13� who pointed out that the
vesicles in the model of Niesert et al. �11� cannot evolve
because of that assumption. Since there is no competition
among the vesicles in the case of unrestricted growth, allow-
ing the inviable vesicles to divide as well would have no
effect at all on the dynamics of the viable vesicles because it
is not possible to produce a viable vesicle by fissioning an
inviable one. In the finite population case, on the other hand,
the inviable vesicles would accumulate steadily and ulti-
mately would reach fixation in the metapopulation.

VI. CONCLUSION

The goal of the research on prebiotic evolution is to put
forth a coherent scenario for the origin and early develop-
ment of life. So at this stage it is appropriate to appraise the
main results of our analysis of this classic package model,
summarized in Fig. 2. Given the spontaneous error rate per
nucleotide  and the molecule length L�1 we can readily
obtain the value of the probability of mutation from func-
tional templates to parasites, u=1−exp�−L�. A plausible es-
timate for these primary parameters is �10−2 and L�100
�1� which yields u�0.6. A glance at Fig. 2 leads to the
disastrous conclusion that even the coexistence between two
templates is prohibited in these circumstances. It is instruc-
tive also to compare our results with those of the hypercycle
which guarantees the stable coexistence of at most d=4 tem-
plates �4� �see �34� for the analysis of the hypercycle in the
presence of an error tail class similar to the parasite class
considered here�. According to Fig. 2, d=4 functional tem-
plates can coexist provided that u
0.3 which implies that
L
35, resulting in a total of 140 nucleotides, a meager im-
provement over the 100 nucleotides prediction for a free rep-
licator.

It should be observed, in addition, that the critical muta-
tion probabilities uc exhibited in Figs. 2 and 8 are best case
results since neither lethal mutations nor accidents were con-
sidered in our calculations. Hence, contrary to the claims of
Niesert et al. �11�, the kind of template coexistence achieved
in a simple package model does not resolve the prebiotic
information crisis. Special mechanisms to prevent indepen-
dent information carriers from competing with one another
within the compartment must be posited. Although unwar-
ranted assumptions like the hypercyclic organization �4� or
the coupling between the templates and the package metabo-
lism �15–18� may weaken the credibility of the models, so
far they seem to stand as the only options to tackle the in-
formation crisis of prebiotic evolution.
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